
Purdue University: Digital Image Processing Laboratories 1

Digital Image Processing Laboratory:

Neighborhoods and Connected Components
February 15, 2021

Introduction

This laboratory illustrates the concepts of pixel neighborhoods and connected pixel sets. Un-
less otherwise specified, you should implement all your algorithms using the C programming
language.

In order to simplify notation, we will denote the set of 2-D lattice points by S and indi-
vidual lattice points by s ∈ S. When necessary will we explicitly denote the 2-D coordinates
of a lattice point by s = (s1, s2), where s1 is the horizontal coordinate (column) and s2 is
the vertical coordinate (row). Also the upper left-most pixel of the image will correspond to
lattice location s = (0, 0).

In this laboratory, we will use the following definitions for neighborhood and connected-
ness.

• We will use a 4 point neighborhood, so the neighbors of a lattice point (s1, s2) are

∂(s1, s2) = {(s1 − 1, s2), (s1 + 1, s2), (s1, s2 − 1), (s1, s2 + 1)} .

We will also use a free boundary, so pixels along the boundary of the image have less
than 4 neighbors each.

• Two neighboring lattice points r ∈ ∂s are said to be connected neighbors if

|xs − xr| ≤ T (1)

where xs is the pixel value at lattice point s and T is a fixed threshold. We will denote
the connected neighbors of s by the set c(s) ⊂ ∂s. More specifically, for this application

c(s) = {r ∈ ∂s| |xs − xr| ≤ T} .

• Pixels s and r are said to be connected if there is a sequence of M pixels s1, s2, · · · , sM
such at s ∈ c(s1), s1 ∈ c(s2), · · ·, sM−1 ∈ c(sM), sM ∈ c(r).

Questions or comments concerning this laboratory should be directed to Prof. Charles A. Bouman,
School of Electrical and Computer Engineering, Purdue University, West Lafayette IN 47907; (765) 494-
0340; bouman@ecn.purdue.edu

Purdue University: Digital Image Processing Laboratories 2

1 Area Fill

In this section, you will write a C program that fills in an area of connected pixels in an
image. To do this, you will compute the set of all pixels which are connected to a specified
pixel s.

1. First write a C subroutine to find the connected neighbors of a pixel s. The structure
of the subroutine call should be as follows:

struct pixel {

int m,n; /* m=row, n=col */

}

void ConnectedNeighbors(

struct pixel s,

double T,

unsigned char **img,

int width,

int height,

int *M,

struct pixel c[4])

• Subroutine inputs:

struct pixel s - This data structure contains the location of the pixel s
whose connected neighbors will be computed.

double T - This is the threshold used in equation (1).

unsigned char **img - This is the 2-D array of pixels img[m][n] denoted
as xs in equation (1).

int width - This is the width of img[height][width].

int height - This is the height of img[height][width].

• Subroutine outputs:

int *M - This is a pointer to the number of neighbors connected to the pixel
s.

struct pixel c[4] - This is an array containing the M connected neighbors
to the pixel s. Here M is assumed to always be less than or equal to 4.

2. In this step, you will write a C subroutine to find all the pixels connected to s0. The
subroutine, which will be called ConnectedSet, may be implemented by maintaining
1) a list of pixels B which are known to be connected to s0, but have not yet been
searched, and 2) a segmentation image Ys which is equal to 1 for pixel’s which are
known to be connected to s and is zero otherwise.

Below is a simple description of an algorithm for doing this.

Purdue University: Digital Image Processing Laboratories 3

Initialize Yr = 0 for all r ∈ S

ClassLabel = 1

ConnectedSet(s0, Y, ClassLabel) {
B ← {s0}
While B is not empty {

s← any element of B

B ← B − {s}
Ys ← ClassLabel

B ← B
⋃ {c(s) ∩ {r : Yr = 0}}

}
return(Y)

}

At termination, the set Ys is 1 at all pixels that are connected to s0. This type of
algorithm is sometimes referred to as region growing because segmented region grows
out from the initial seed point s0. At each step, B contains pixels at the boundary of
the set whose neighbors have not yet been checked.

The structure of the subroutine call should be as follows:

void ConnectedSet(

struct pixel s,

double T,

unsigned char **img,

int width,

int height,

int ClassLabel,

unsigned int **seg,

int *NumConPixels)

• Subroutine inputs:

struct pixel s - This data structure contains the location of the pixel s
that will serve as the seed.

double T - This is the threshold used in equation (1).

unsigned char **img - This is the 2-D array of pixels img[m][n] denoted
as xs in equation (1).

int width - This is the width of img[height][width].

int height - This is the height of img[height][width].

int ClassLabel - This the integer value that will be used to label any pixel
which is connected to s.

• Subroutine outputs:

Purdue University: Digital Image Processing Laboratories 4

unsigned int **seg - This is a 2-D array of integers which contains the class
of each pixel and is passed to ConnectedSet from the main routine. If a pixel
at location i, j is found to be connected to s, then seg[i][j]← ClassLabel.
Otherwise the value of seg[i][j] is left unchanged.

int *NumConPixels - This is the number of pixels which were found to be
connected to s.

Some additional notes:

• The memory for the array unsigned int **seg should be allocated by the main
routine that calls ConnectedSet.

• The value of NumConnectedPixels needs to be passed back as a pointer, so the
subroutine call for ConnectedSet might look like

ConnectedSet(s,T,img,width,height,ClassLabel,seg,&NumConPixels);

3. Down load the image img22gd2.tif. Apply the subroutine ConnectedSet to extract the
connected set of pixels for s = (67, 45), and T = 2. Note from our lattice definition
that 67 is the column index, and 45 is the row index. Print out an image with the
elements in the connected set printed as black and the remaining pixels printed as
white.

Section 1 Report:
Hand in:

1. A print out the image img22gd2.tif.

2. A print out of the image showing the connected set for s = (67, 45), and T = 2.

3. A print out of the image showing the connected set for s = (67, 45), and T = 1.

4. A print out of the image showing the connected set for s = (67, 45), and T = 3.

5. A listing of your C code.

2 Image Segmentation

In this section, you will use the subroutines for region filling to segment the image into
connected components.

1. Use the subroutine ConnectedSet to extract all the connected sets in the image
img22gd2.tif. You can do this by indexing through the image in raster order and
appling the ConnectedSet subroutine at each pixel that does not yet belong to a con-
nected set. Note that for a small threshold, the size of most connected sets for this
image will be small, resulting in a large number of connected sets in the segmentation.

Purdue University: Digital Image Processing Laboratories 5

2. Generate a segmentation of the image consisting of connected sets containing greater
than 100 pixels. Number each of these large connected sets sequentially starting at 1.
All remaining connected sets should be labeled as 0. There will be fewer than 255 large
connected sets, so you can store the label for each pixel as a 2-D unsigned character
array. Save this 2-D array as a monochrome TIFF image, segmentation.tif.

3. To view your segmentation clearly, you will need to scramble the colormap to provide
contrast between the distinct regions. You can do this in Python with the following
commands:

import numpy as np
from PIL import Image
import matp lo t l i b . pyplot as p l t
import matp lo t l i b as mpl

Read in a segmentation TIFF image.

im = Image .open(’ segmentat ion . t i f ’)

Import Image Data into Numpy array.

x = np . array (im)

Obtain number of segmentation area.

N = np .max(x)

Randomly set color map.

cmap = mpl . c o l o r s . ListedColormap (np . random . rand (N+1 ,3))
p l t . imshow (x , cmap=cmap , i n t e r p o l a t i o n=’ none ’)
p l t . c o l o rba r ()
p l t . t i t l e (’ Image ’)

Print or export this color segmentation of the image.

Section 2 Report:
Hand in:

1. Print outs of the randomly colored segmentation for T = 1, T = 2, and T = 3.

2. A listing of the number of regions generated for each of the values of T = 1, T = 2,
and T = 3.

3. A listing of your C code.

