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1 Introduction

It is often useful to view an image as a random process. If we assume a collection of images
are all sampled from the same distribution, we can estimate the covariance between pixels
in each image. An eigenvalue/eigenvector decomposition of the covariance matrix reveals
the principal directions of variation between images in the collection. This has applications
in image coding, image classification, object recognition, and more. This lab will explore
the concepts of image covariance, covariance estimation, and eigen decomposition of images.
These ideas will then be used to design a basic image classifier.

2 Multivariate Gaussian Distributions and Whitening

A multivariate Gaussian random vector X = [X1 . . . Xp]
t has a density of the form,

p(x) =
1

(2π)p/2|R|1/2
exp

{
−1

2
(x− µ)tR−1(x− µ)

}
(1)

where

µ = E[X] (2)

R = E
[
(X − µ)(X − µ)t

]
(3)

The mean vector, µ, is a p × 1 column vector, and the covariance, R, is a p × p positive
definite and symmetric matrix. Since we can shift the random vector to have zero mean, we
will assume from this point that X is zero-mean (µ = [0 . . . 0]t) unless otherwise indicated.

The eigen-decomposition of the covariance matrix R is given by

R = EΛE−1 (4)

where the columns of E = [e1 e2 . . . ep] are the p eigenvectors of R, and Λ = diag(λ1, . . . , λp)
contains the corresponding p eigenvalues. Since R is symmetric, the eigenvectors are orthog-
onal and each can be scaled to have unit length (i.e. E is an orthonormal matrix).

EtE = I (5)

Questions or comments concerning this laboratory should be directed to Prof. Charles A. Bouman,
School of Electrical and Computer Engineering, Purdue University, West Lafayette IN 47907; (765) 494-
0340; bouman@ecn.purdue.edu
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This implies that Et = E−1, so the decomposition of R has the simpler form

R = EΛEt . (6)

The eigen-decomposition of R is very important because it can be used to decorrelate
and/or whiten the random vector X. Without loss of generality, assume that X is zero
mean, and define

X̃ = EtX . (7)

Then the components of X̃ will be uncorrelated with diagonal covariance Λ.

E
[
X̃X̃ t

]
= E

[
EtXX tE

]
= EtE

[
XX t

]
E

= EtRE

= EtEΛEtE

= Λ

This means that the p random variables in the vector X̃ are uncorrelated, and therefore
independent in the Gaussian case. Furthermore, the variances of the components of X̃ are
given by the eigenvalues, E[X̃2

k ] = λk. We can show these facts more explicitly by examining
the density of X. Knowing that X is N(0, R), and that the inverse of the covariance in (6)
is given by R−1 = EΛ−1Et, the density of X can be written as

p(x) =
1

(2π)p/2|R|1/2
exp

{
−1

2
xtR−1x

}
(8)

=
1

(2π)p/2|Λ|1/2
exp

{
−1

2
x̃tΛ−1x̃

}
(9)

=
1

(2π)p/2|Λ|1/2
exp

{
−1

2

p∑
k=1

x̃2k
λk

}
(10)

=

p∏
k=1

1

(2πλk)1/2
exp

{
− 1

2λk
x̃2k

}
, (11)

where x̃ = Etx.

The form of the argument in (10) indicates that the contours of the density p(x) are
ellipsoidal, as illustrated in Figure 1(a). Since the transformation X̃ = EtX is simply a
rigid rotation of the axes (because E is orthonormal), the relationship in (10) confirms
two things: first that the principal directions of the ellipsoidal contours are given by the
eigenvectors in E, and second, that the lengths of the principal axes are proportional to the
square root of the eigenvalues, λk. Notice in Figure 1(b) that the contours in the rotated
{e1, e2} coordinate system do not have any “diagonal” component. This reflects the fact
that the random variables in X̃ are uncorrelated.

Further, since the random variables in X̃ are uncorrelated, we can produce a whitened
random vector W with components that are i.i.d./ N(0, I), by simply normalizing the vari-
ance of each element of X̃,

W = Λ−1/2EtX . (12)
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(a) (b) (c)

Figure 1: Contours illustrating the shape of a Gaussian density (p = 2). ek and λk are the
eigenvectors and eigenvalues of the covariance matrix of X = (X1, X2). (a) Original density,
(b) density of the decorrelated random vector X̃, (c) density of the whitened random vector
W , formed by normalizing each element of X̃.

It is easily verified that E[WW t] = I. Note that since Λ is diagonal, Λ−1/2 is given by
diag(1/

√
λ1, . . . , 1/

√
λp). Referring to the illustration in Figure 1(c), this final normalization

scales along the e1 and e2 directions and the contours become spherical.

In practice, these relationships are useful for generating samples of random vectors. By
inverting (12), we have that

X = EΛ1/2W . (13)

So the random vector X, with covariance R, can be generated by applying the transformation
EΛ1/2 to the vector of i.i.d. N(0, I) random variables in W .

2.1 Exercise: Generating Gaussian random vectors

Our goal will be to use Python to generate independent Gaussian random vectors, Xi, having
the following covariance:

RX =

[
2 −1.2
−1.2 1

]
(14)

using the transformation in (13). (Notice, Python uses np.dot to do multiply matrices.)
Consider the eigen-decomposition RX = EΛEt.

1. First generate a set of n = 1000 samples of i.i.d. N(0, I) Gaussian random vectors,
Wi ∈ <p, with p = 2 and covariance RW = I2×2. Place them in a p× n matrix W .

2. Next generate the scaled random vectors X̃i = Λ1/2Wi. (Eigenvalues and eigenvectors
can be computed with Python’s numpy.linalg.eig function.)

3. Finally, generate the samples Xi by applying the transformation Xi = E X̃i.

4. Produce scatter plots of W , X̃, and X in separate figure windows. For each, use
commands similar to plt.plot(W[0,:],W[1,:],’.’), assuming W is oriented as p×n.

https://numpy.org/doc/stable/reference/generated/numpy.linalg.eig.html
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Be sure to use plt.axis(’equal’)) after each plot command to force the same scale
of the horizontal and vertical axes.

This exercise will be continued in the following section.

Section 2.1 Report:
Hand in your scatter plots for W , X̃, and X.

2.2 Exercise: Covariance Estimation and Whitening

Obviously before we can decorrelate or whiten a data set, we first need to know something
about the covariance. We often do not know the true covariance, but we can obtain an
estimate from a set of training data.

Suppose we have a set of n training vectors (i.i.d.), arranged as columns in a p× n data
matrix X.

X = [X1 X2 . . . Xn] (15)

(Note that we’ve slightly changed notation from the previous section, so that now Xi are
vectors, and X is a matrix.) If the training vectors are known to be zero mean (µ = [0 . . . 0]t),
then an unbiased estimate of the covariance is

R̂ =
1

n

n∑
i=1

XiX
t
i =

1

n
XX t . (16)

In practice, it is often necessary to center the data by first estimating and removing
the sample mean. For example, if the above Xi’s are i.i.d. random vectors with unknown
mean, µ, and covariance, R, then we can use the following to obtain an unbiased covariance
estimate,

µ̂ =
1

n

n∑
i=1

Xi (17)

R̂ =
1

n− 1

n∑
i=1

(Xi − µ̂)(Xi − µ̂)t =
1

n− 1
ZZt (18)

where Zi = Xi − µ̂ are the mean-centered data vectors and and Z = [Z1 · · · Zn] is the
associated matrix of vectors.

Now having an estimate of the covariance, the whitening transformation of (12) can be
obtained from the eigen-decomposition of R̂. Note that if R̂ is not full rank, some of the
eigenvalues in Λ will be zero. This issue will be discussed further in the next section.

1. Using the 1000 samples ofXi generated in the previous exercise, estimate the covariance
using the expressions in (17) and (18). Produce a listing of the covariance estimate
and compare to the theoretical values.
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2. From the covariance estimate, use Python to compute the transformation that will
decorrelate the Xi samples, as in (7). Apply this transformation to the data to produce
the zero-mean decorrelated samples X̃i.

3. Use Python to compute the transformation that will fully whiten the Xi samples, as
in (12). Apply this transformation to the data to produce the zero-mean, identity
covariance samples Wi.

4. Produce scatter plots of X̃i and Wi, using the same guidelines as before. Also compute,
R̂W , the covariance estimate of W .

Section 2.2 Report:

1. Hand in the theoretical value of the covariance matrix, RX . (Hint: It is given in
equation (14).)

2. Hand in a numerical listing of your covariance estimate R̂X .

3. Hand in your scatter plots for X̃i and Wi.

4. Hand in a numerical listing of the covariance estimate R̂W .

3 Estimation of Eigenvectors and Eigenvalues Using

the Singular Value Decomposition

As the previous exercise demonstrated, the eigenvectors and eigenvalues can be estimated
using the eigen-decomposition of the sample covariance,

R̂ = EΛEt . (19)

However, this is often not practical for high-dimensional data, especially if the data dimen-
sion, p, is much larger than the number of training images, n. For example, in working with
images the data vectors can be quite large, with p being the number of pixels in the image.
This can make R̂ extremely large. For example, the covariance of a 400 × 400 image would
contain 4004 or around 25 billion elements! However, since the columns of R̂ in (16) are all
linear combinations of the same n vectors, the rank of R̂ can be no greater than n, hence
R̂ will have, at most, n nonzero eigenvalues. We can compute these n eigenvalues, and the
corresponding n eigenvectors without actually computing the covariance matrix. The answer
is in a highly useful matrix factorization, the singular value decomposition (SVD).

The SVD of a p× n matrix X with p > n has the following form,

X = UΣV t (20)

where both U ∈ <p×n and V ∈ <n×n have orthonormal columns, and Σ ∈ <n×n is a
diagonal matrix. The columns of U are called the left singular vectors, columns of V the
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right singular vectors, and the elements along the diagonal of Σ are the singular values which
are conventionally arranged in descending order.

In an imaging application where X represents a data matrix (each column is a single
image arranged in raster order, for example), it is often the case that p >> n (fewer training
images than pixels), so the SVD has the following structure,

X

p× n

 =


U

p× n


[

Σ
n× n

] [
V t

n× n

]
(21)

where U tU = In×n and V tV = In×n and Σn×n is diagonal.

The SVD of X is particularly useful for diagonalizing the matrices XX t and X tX. Sub-
stituting X = UΣV t yields,

XX t = UΣV tV ΣtU t = UΣ2U t (22)

X tX = V ΣtU tUΣV t = V Σ2V t . (23)

Since Σ2 is diagonal, (22) and (23) are each in the form of an eigen-expansion. So from
the SVD of the data matrix X, we see in (22) that the left singular vectors in U are the n
eigenvectors of XX t corresponding to nonzero eigenvalues, and the singular values in Σ are
the square roots of the corresponding eigenvalues.

Now since R̂ = (1/n)XX t, the result in (22) allows the calculation of the non-zero
eigenvalues and corresponding eigenvectors of R̂ without explicitly computing R̂ itself, which
is especially efficient if n << p. The procedure is summarized as follows:

1. Let Z = 1√
n
X. Notice that R̂ = ZZt. (For non-zero-mean data, first subtract the

sample mean, µ̂, from each column of X and divide by
√
n− 1.)

2. Compute the SVD of Z = UΣV t.

3. From (22) we know the n columns of U are eigenvectors of R̂, and the diagonal elements
of Σ are the square roots of the corresponding eigenvalues.

4 Eigenimages, PCA, and Data Reduction

The eigenvectors of an image covariance matrix are also called eigenimages. The eigenimages
corresponding to the largest eigenvalues represent the “directions” in <p of the greatest vari-
ation among a set of images having that covariance. Therefore, the coordinates of an image
along these eigenvector directions (obtained by projecting the image onto each eigenvector)
provide a useful set of parameters, or a feature vector, characterizing the image. If we let
Um be a matrix containing the first m eigenvectors, Um = [u1 · · ·um], the eigenvector feature
vector, Y , for the image X is computed by

Y = U t
mX . (24)



Purdue University: Digital Image Processing Laboratories 7

This can be viewed as a specific type of data reduction where a high-dimensional vector
X is represented with a lower dimensional vector Y . Note that Y is not an image–it doesn’t
even have the same dimension as X. However, we can obtain an approximation of the
original image X from a linear combination of the eigenimages.

X̂ =
m∑
k=1

uk(utkX) = UmY (25)

It can easily be shown that the mean square error of this approximation is the sum of the
“remaining” eigenvalues.

E
[
||X̂ −X||2

]
=

p∑
k=m+1

λk (26)

Therefore the synthesis approximation will be closest in the MSE sense if we use the largest
eigenvalue/eigenvector components. Use of the approximation in (25) is commonly referred
to as principal component analysis, or PCA.

4.1 Exercise

In this exercise we will compute eigenvectors associated with images (also called eigenim-
ages) of typed English letters. Training images are provided in the file training data.zip,
which can be downloaded from the lab web page. This file will unzip to a directory named
“training data”, which contains subdirectories of character images typed in various fonts. It
also contains a Python script read data.py that has a function to read in all these training
images into columns of a single matrix X and another function to display sample images.

Your first task is to compute the eigenvalues and eigenvectors of the estimated image
covariance matrix, as determined by the given training images. However, as discussed in Sec-
tion 3, you should do this without directly computing the image covariance R̂ = (1/n)XX t.
An outline for the procedure follows:

1. Import function from the provided read data.py script to read the images into a vector
X.

2. Compute the mean image, µ̂, over the entire data set, and center the data by subtract-
ing the mean image from each column of X.

3. Use the approach described in Section 3 to compute the eigenvalues and eigenvectors
of the image covariance for this data set. Again, you should not compute the (p × p)
covariance matrix directly. Note the Python function numpy.linalg.svd computes the
SVD matrices of Z in the compact form of (21).

Display the eigenimages associated with the 12 largest eigenvalues. You will have to
numpy.reshape each image column vector into a 64× 64 image matrix. Use the plt.imshow
command to automatically scale the displayed gray level range, and use a grayscale colormap
by adding flag cmap=plt.cm.gray to plt.imshow. Use plt.subplots(3,4) to place the 12
eigenimages into a single figure. You might want to use the read data.py script for guidance.

https://numpy.org/doc/stable/reference/generated/numpy.linalg.svd.html
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Next, for each of the images in the centered data set, compute the projection coefficients,
Y = U t(X − µ̂) along the n eigenvectors in U . Note that the projection coefficients Y for
each image is an n×1 column vector, so these can all be placed as columns in a single (n×n)
matrix.

On the same axes, plot the first 10 projection coefficients for the first four images in the
data set. So each of the first four letters, {a,b,c,d}, is contained in the Python matrix X[:, : 4].
For each of these letters, you will plot the values of the first 10 projection coefficients. Your
figure should contain four graphs on the same axes. Each graph should have a vertical access
which represents the magnitude of the coefficient, and a horizontal axis which indicates the
index of the coefficient ranging from 1 to 10. Use the plt.legend command to identify the
letter corresponding to each of the 4 graphs.

Finally, for the first image in the data set, X[:, 0], show the result of synthesizing the orig-
inal image using only the first m eigenvectors. Do this for m = 1, 5, 10, 15, 20, 30. Remember
to add the mean µ̂ back in after the synthesis, and you will again have to np.reshape the
image column vectors back into a matrix before displaying. Use fig, axs = plt.subplot(3,2)
and axs[i//2,i%2].imshow to display the six synthesized versions and also produce a plot of
the original image.

Section 4 Report:

1. Hand in the figure with the first 12 eigenimages.

2. Hand in the plots of projection coefficients vs. eigenvector number.

3. Hand in the original image, and the 6 resynthesized versions.

5 Image Classification

In a classification problem we are given an input image x that has to be assigned to one
of several defined classes, Ck. An example which we will explore shortly is a system that
takes an input image containing a text character, and is tasked with identifying the symbol
represented in the image. In problems where the input image x contains a large number of
pixels, eigen-expansions and PCA can be useful for reducing the dimension of the problem,
and in dealing with the common issue of a limited set of training data.

In a probabilistic framework, an image X belonging to class Ck is modeled with a prob-
ability distribution given by p(x|Ck), where the distributions are generally different across
classes. Given an input image x, the classification can proceed by finding the class label, k∗,
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that yields the greatest posterior probability, P (Ck|X = x).

k∗ = argmax
k

P (Ck|X = x) (27)

= argmax
k

p(x|Ck)P (Ck)

p(x)
(28)

= argmax
k

p(x|Ck)P (Ck) (29)

If we assume presently that the prior probability, P (Ck), is uniform (all classes are equally
likely), then this result corresponds to a maximum likelihood (ML) class estimate.

k∗ = argmax
k

p(x|Ck) (30)

As an example, consider the case in which the images in each class are Gaussian dis-
tributed with a unique mean and covariance, p(x|Ck) ∼ N(µk, Rk). In this case,

k∗ = argmax
k

{
1

(2π)p/2|Rk|1/2
exp

(
−1

2
(x− µk)tR−1k (x− µk)

)}
(31)

= argmax
k

{
−1

2
(x− µk)tR−1k (x− µk)− 1

2
log(|Rk|)−

p

2
log(2π)

}
(32)

= argmin
k

{
(x− µk)tR−1k (x− µk) + log(|Rk|)

}
(33)

Notice the first term in (33) represents a weighted distance of the image to the class mean.

In practice, the means µk and covariances Rk for each class would be estimated from a
set of training images in which the class of each image is known. However two issues arise
with high-dimensional data. First, the estimate of Rk is often not invertible due to a limited
amount of training data, and second, each covariance Rk is usually enormous in size. Both
of these issues can be addressed by transforming the high dimensional data, x ∈ <p, to a
lower dimensional vector, y ∈ <m,

y = Atx (34)

where the columns of A span a m-dimensional subspace of <p. The means and covariances
of each class,

E [Y |Ck] = E [AtX|Ck] = Atµk ≡ µ′k (35)

E [(Y − E[Y ])(Y − E[Y ])t|Ck] = AtRkA ≡ R′k (36)

can then be estimated from the transformed training samples, yi.

Further, if X is Gaussian, Y will also be Gaussian, and the classifier of equation (33) can
be applied to the lower dimensional data.

k∗ = argmin
k

{
(y − µ′k)tR′−1k (y − µ′k) + log(|R′k|)

}
(37)

Now, how does one choose the transformation, A? One simple choice is the first m
eigenvectors of the global covariance matrix R, as estimated from the entire training data
set (irrespective of class).

R = EΛEt (38)
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A = [e1 e2 . . . em] (39)

This approach is relatively straight forward, but it does not take into account how the
distributions of each class are separated from each other after projecting onto the lower
dimensional subspace. Therefore direct PCA may not be an optimal solution for the purpose
of classification. Another approach is to define a measure of the spread of the distributions
and find the transformation A which maximizes this parameter. One such function is the
Fisher linear discriminant [1], but this is a bit beyond the scope of this lab. In the following
exercise, we will only consider PCA for dimension reduction.

5.1 Exercise: Classification and PCA

In this exercise, you will implement a classifier using the text character images from the last
section as a training set. In this context the classifier will accept an input image, assumed to
be of a lower-case English letter, and determine which of the 26 English letters it represents.

First you need to reduce the dimension of the training data using PCA.

1. Compute the eigenvectors for the covariance of the combined data set. (You already
did this in Section 4.) You are disregarding class here, so consider the covariance
around the global mean image, µ̂, as in (17) and (18).

2. Form the transformation matrix A in (39) using the first 10 eigenvectors (corresponding
to the 10 largest eigenvalues).

3. Transform each of the original training images in X to a lower dimensional representa-
tion Y by first subtracting the global mean image, µ̂, then applying the transformation
A. In effect, Y = At(X − µ̂).

4. Using the data vectors, Yi, compute the class means and covariances for each of the 26
classes,

µ̂k =
1

|Ck|

|Ck|∑
i=1

Y
(k)
i (40)

R̂k =
1

|Ck| − 1

|Ck|∑
i=1

(Y
(k)
i − µ̂k)(Y

(k)
i − µ̂k)t (41)

where we use the notation Y
(k)
i for the ith training vector of class k, and |Ck| for the

number of training vectors in class k.
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Tip: You might find it easiest to use a dictionary list to store the mean and covariance
matrices for all 26 classes. You can use the following to construct a dictionary list.

params=[]

a = {’mean’: 0, ’cov’: 1}

params.append(a)

Then the mean vector and covariance matrix for class k can be saved in the variables
params[k][′mean′] and params[k][′cov′].

The lab web site provides a file test data.zip, which contains an additional set of 26
character images (not part of the training set). Use each of these images to test the classifier
previously described,

k∗ = argmin
k

{
(y − µk)tR−1k (y − µk) + log(|Rk|)

}
. (42)

You will first need to reduce the dimension of each input image using the same transformation
in Step 3 above. Note that you want to project onto the same subspace used for the training
images, so you need to use the same exact A and µ̂ you computed in the training stage.
Produce a 2-column table showing each input image that is mis-classified, and the character
it was mapped to.

Section 5 Report:
Submit a 2-column table showing for each mis-classified input image: (1) the input character,
and (2) the output from the classifier.

You should have observed this classifier produces a number of errors in this exercise. A
probable reason for this is the limited number of training images available for estimating
the class-dependent covariance matrices, Rk. We might reduce the errors by using a more
constrained matrix, Bk, in place of Rk.

k∗ = argmin
k

{
(y − µk)tB−1k (y − µk) + log(|Bk|)

}
(43)

The following are some possibilities:

1. Let Bk = Λk, i.e. assume each class has a different diagonal covariance, where the
elements of Λk are the diagonal elements of Rk.

2. Let Bk = Rwc, i.e. assume each class has the same covariance, where Rwc is defined as
the average within-class covariance,

Rwc =
1

K

K∑
k=1

Rk (44)

Here, K is the number of classes.

3. Let Bk = Λ, i.e. each class has the same diagonal covariance, where the elements of Λ
are the diagonal elements of the matrix, Rwc, defined above.
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4. Let Bk = I, i.e. each class has an identity covariance around a different mean, µk.

Note in each of these cases we are still computing the difference between the input and
each class mean µk, but each of these cases uses a different scaling matrix, Bk. Re-run the
previous classification test using each of the above modifications.

Section 5 Report:
For each modification, submit a 2-column table showing for each mis-classified input image:
(1) the input character, and (2) the output from the classifier. Also answer the following:

1. Which of the above classifiers worked the best in this experiment?

2. In constraining the covariance, what is the trade off between the accuracy of the data
model and the accuracy of the estimates?
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