
Purdue University: Digital Image Processing Laboratories 1

Digital Image Processing Laboratory:

Achromatic Baseline JPEG encoding Lab
March 19, 2021

1 Introduction

JPEG is an acronym for the “Joint Picture Expert Group” (www.jpeg.org). This com-
mittee was formed jointly by ISO and ITU to form standards for continuous tone image
compression. The standard has been very successful, and has resulted in a commonly used
baseline format known as JPEG based on lossy block transform coding of grayscale and
color images. JPEG has become very popular because it is a non-proprietary standard, and
because it is simple and efficient to implement while yielding good performance.

The JPEG standard supports a number of standard modes as described below:

• Sequential mode - Block-by-block lossy encoding in raster scan order based on block
transform coding using DCT’s.

• Progressive mode - Coded image is transferred starting with coarse resolution infor-
mation and progressing to finer resolution detail.

• Lossless mode - Lossless image coding based on predictive coding using a neighbor-
hood of 3 samples.

• Hierarchical mode - lower-resolution image is encoded first, upsampled and interpo-
lated to predict the full-resolution image and the prediction error is encoded with one
of above 3 operation modes.

In this lab, you will learn about block transform coding by implementing the baseline
JPEG standard. The baseline JPEG coder is the simplest version of DCT-based sequential
coder. For simplicity, we will only consider coding of 8-bit grayscale images.

Figure 1 illustrates the main procedures of the DCT-based JPEG encoder. The source
image is partitioned into 8 × 8 blocks. Then, each block is transformed through a forward
discrete cosine transform (FDCT) and quantized. After the final step of entropy coding, we
can get the compressed JPEG data. Decompression the requires reversing these steps with
entropy decoding followed by computation of the inverse discrete cosine transform (IDCT).

Questions or comments concerning this laboratory should be directed to Prof. Charles A. Bouman,
School of Electrical and Computer Engineering, Purdue University, West Lafayette IN 47907; (765) 494-
0340; bouman@ecn.purdue.edu

Purdue University: Digital Image Processing Laboratories 2

DCT-based encoder
8 × 8 blocks

FDCT Quantizer Entropy
encoder

Table
specifications

Table
specifications

Source
image data

Compressed
image data

Figure 1: DCT-based JPEG encoder simplified diagram

C i

00s s

ss

ss

s

s

s

01

10 11

70 71 77

17

07

TISO0810-93/d017

Top

Left Right

Bottom

Figure 2: Partition and orientation of 8x8 blocks

2 DCT Block Transforms and Quantization

The source image is first broken into 8×8 blocks. The pixel values syx in each of these blocks
are then transformed by the FDCT into an 8 × 8 block of 64 DCT coefficients. Figure 2
illustrates this process with the DCT coefficients denoted by the variables Svu where v and
u are integer frequency variables between 0 and 7. The coefficient S00 is known as the DC
coefficient because it represents the average value of the block, whereas the remaining values
are known as the AC coefficients.

The FDCT and IDCT are defined as follows:

FDCT :

Svu =
1

4
CuCv

7∑

x=0

7∑

y=0

syxcos
(2x+ 1) uπ

16
cos

(2y + 1) vπ

16

IDCT :

syx =
1

4

7∑

u=0

7∑

v=0

CuCvSvucos
(2x+ 1) uπ

16
cos

(2y + 1) vπ

16

where Cu and Cv are defined by

Cu =

{
1√
2

for u = 0

1 for u 6= 0

Purdue University: Digital Image Processing Laboratories 3

Note that the dct2 function in Matlab conforms to this definition.

Prior to the FDCT operation, each 8× 8 block is level shifted by subtracting 128. This
requires a signed representation for each pixel, so 8-bit 2’s complement form is used. More
specifically, the image sample values are initially in the range of [0, . . . , 255]; so after sub-
traction of 128 they are converted to values in the range [−128, . . . , 127] in 2’s complement
form.

A numerical analysis of the 8 × 8 FDCT coefficients shows that the non-fractional part
of the DCT coefficients can grow by at most a factor of 8 or equivalently 3 bits. This means
that after transformation by the FDCT the coefficients require 11=8+3 bit signed integers
in 2’s compliment form. So, the sample values in the range [−128, . . . , 127] may grow to the
range [−1024, . . . , 1023].

After the 8 × 8 FDCT, each of the 64 resulting DCT coefficients is quantized by a
uniform quantizer. The quantizer step size is defined in a 8 × 8 table of integers known as
the quantization table. Loss of image information is caused by this quantization process
with different step sizes resulting in different amounts of information loss. In general, larger
quantization step sizes will result in reduced quality. Importantly, the preprocessing by the
FDCT allows the amount of loss to be varied as a function of the spatial frequency of the
image.

The uniform quantizer operates according to the following equation

Qvu = round

(

Svu

γ∆vu

)

(1)

where Qvu, Svu, ∆vu, and γ are defined as follows.

Qvu - Quantized DCT coefficient formed by rounding.

Svu - Input sample (v, u) in 8× 8 source image block.

∆vu - Step size at location (v, u) in the 8× 8 quantization table.

γ - A scalar that controls overall quality level. A larger value of γ reduces quality,
whereas a smaller value of γ increases quality. The maximum value of γ∆vu

is upper bounded to 16 bits in the ITU T-81 recommendation.

Proper choice of the quantization matrix is critical to achieving good performance with
the JPEG standard. Not surprisingly, there has been a great deal of research performed to
determine the best selection of this matrix. It is well known that visual sensitivity falls off
with higher spatial frequency; so generally, the higher frequency entries of the quantization
table are proportionately larger. This tends to put more of the distortion into the higher
spatial frequencies where they are less noticeable.

The JPEG standard specifies a typical quantization table; however the quantization table
may also be specified in the file parameter field of the JPEG file header. Each coefficient of
the quantization table is represented by an 11 bit signed 2’s complement number. A typical
quantization table for either a grayscale image or the luminance component of a color image
is shown below.

Purdue University: Digital Image Processing Laboratories 4

16 11 10 16 124 140 151 161

12 12 14 19 126 158 160 155

14 13 16 24 140 157 169 156

14 17 22 29 151 187 180 162

18 22 37 56 168 109 103 177

24 35 55 64 181 104 113 192

49 64 78 87 103 121 120 101

72 92 95 98 112 100 103 199

Figure 3: Typical quantization table used for the luminance component of a JPEG image.

2.1 Exercises

In the following, you will use Matlab to apply block DCT transforms followed by quantization
to an image in order to determine their effect.

1. Download the grayscale image img03y.tif from the laboratory home page. The image
size has been chosen to have both height and width which is a multiple of 8. This will
simplify block transform processing in 8× 8 blocks.

2. Load img03y.tif into Matlab and convert the resulting matrix to type double.

3. Level shift the image by subtracting the value 128 from each element of the array.

4. Download the JPEG utilities from the laboratory home page. This zip file contains a
Matlab script called Qtables.m.

5. The Matlab script Qtables.m contains definitions for the matrices Quant and Zig. You
can load these matrices into your Matlab workspace by running the Qtables.m script.
The variable Quant is an 8× 8 matrix containing the typical quantization coefficients
for JPEG.

6. Perform 8 × 8 block FDCT and Quantization using Matlab’s built-in functions dct2
and blockproc. The function dct2 performs 2-D FDCT’s of any specified size, and the
function blockproc allows you to apply operations to each block of an image. You may
apply this function using the commands:

fn = @(x) round(dct2(x.data,[8,8])./(Quant*gamma));

dct_blk = blockproc(img,[8,8],fn);

The first line defines the function handle, fn, describing the operation to be performed
on each block. The result of the block processing and quantization is stored in the
matrix dct blk.

Purdue University: Digital Image Processing Laboratories 5

7. Use Matlab’s fwrite command to save the variables in dct blk as 16-bit signed integers
using 2’s complement representation. Save the data in a file named img03y.dq. The
file should start with two 16-bit signed values specifying the number of rows (height)
and number of columns (width) in the image. This file will be used as an input file in
a future section.

This file may be written by using fwrite with the PRECISION field set to ’integer*2’ .
The file data should be stored in raster order going from left-to-right first, and then
moving from top-to-bottom. (Note: Matlab naturally orders data along columns first
rather then rows. Taking the matrix transpose before writing out will store the array
in conventional raster order.)

8. Write a Matlab script that reads in the file img03y.dq and reverses the operations of
block transformation and quantization to get the restored image. You should use the
blockproc and idct2 commands in this script.

9. Obtain the difference image by subtracting the restored image from the source image.
The difference image may contain small or negative values. So you should scale the
difference by 10 and level shift the values by adding 128 to make them positive.

10. For your report, print or export the original image, restored image, and also the shifted
difference image. Repeat this procedure for γ = 0.25 and γ = 4.

Section 2 Report:

Do the following:

1. Hand in a hard copy of your Matlab script for block transforming, quantizing, and
storing the file img03y.dq.

2. Hand in a hard copy of your Matlab script for restoring the image from the file
img03y.dq.

3. Hand in a hard copy of the original, restored, and difference images for γ = 0.25, 1,
and 4.

4. Comment on the effect of γ on your results.

2.2 Differential Encoding and the Zig-Zag Scan Pattern

Among the quantized 64 DCT coefficients, the DC coefficient is treated separately from the
other 63 AC coefficients. (In the following sequel, when DCT coefficients are mentioned,
they implicitly mean the quantized values.) This is because it corresponds to the average
gray level of each 8 × 8 block. Generally, the DC coefficient has the highest energy of the
DCT coefficients; so a fine quantization step size will lead to a large number of bits to code.

Purdue University: Digital Image Processing Laboratories 6

TISO0690-93/d005

DC

DC DC

Block Block

AC AC

AC AC

i - 1i

01 07

70 77

i - 1 i

i - 1 i

DIFF = DC - DC

Differential DC encoding Zig-zag order

(a) (b)

Figure 4: Encoding of DC and AC coefficients in JPEG. (a) The DC coefficient
is differentially encoded from block to block using a raster ordering of the blocks.
(b) The AC coefficients are ordered within each block using a Zig-zag scan pattern.
The pattern is used so that small coefficients that are likely to be zero are grouped
together.

Alternatively, a large quantization step size will result in a substantial DC shift, which can
cause blocking artifacts in the restored image.

Another important property of the DC coefficient is that it tends to be highly correlated
among adjacent image blocks. This is because the average gray level of adjacent image blocks
is likely to be similar.

To improve image quality and reduce bit rate, the DC coefficient is differentially encoded.
This means that, using a raster ordering of the blocks, only the difference between the current
and previous DC coefficients is coded. The differential DC coefficient for the kth block is
computed by

DIFF (k) = Q
(k)
00 −Q

(k−1)
00 (2)

where Q
(k)
00 is the current DC coefficient and Q

(k−1)
00 is the DC coefficient from the previous

block in raster order. For the first block of the image, Q
(k−1)
00 is set to zero.

The remaining 63 AC coefficients have a high probability of being zero after quantization
because the higher frequency coefficients usually have lower energy and the higher frequency
quantization table entries are usually larger. Therefore, it is very important to order the
coefficients so that coefficients of zeros are likely to be grouped together, forming long “run
lengths” of zeros. To accomplish this goal, the AC coefficients are order using a so-called
zig-zag scan pattern as illustrated in Figure 4.

2.3 Exercises

In the following, you will use Matlab to observe the properties of the DC and AC DCT
coefficients.

Purdue University: Digital Image Processing Laboratories 7

1. Using the results from section 2.1 for γ = 1.0, extract the DC coefficient from each
JPEG block. Organize the coefficients in a 2-D array corresponding to their positions
in the original image. Then display this 2-D array as an image. To display negative
value properly, add 128 to the DC coefficient values.

2. For each JPEG block, put the AC coefficients in zig-zag order. Do this by forming a
Matlab array of size N × 63 where N is the number of blocks in the image. You will
find the variable Zig defined in Qtables.m useful for this step.

3. Compute the mean absolute value of each AC coefficient in zig-zag order (average
across blocks). Plot the mean value as a function of the coefficient index.

Section 2 Report:

Do the following:

1. Hand in a hard copy of the image formed by the DC coefficients. What does it look
like?

2. Explain why the DC coefficients of adjacent blocks are correlated.

3. Hand in your plot of the mean value of the magnitude of the AC coefficients for γ = 1.0.
Explain the form of this plot.

3 Entropy Encoding of Coefficients

In order to reduce the number of bits required to represent the quantized image, both the
differential DC and AC coefficients must be entropy encoded. To do this, JPEG uses two
basic encoding schemes, the Variable-Length Code (VLC) and the Variable-Length Integer
(VLI). The VLC encodes the number of bits used for each coefficient, and the VLI encodes
the signed integer efficiently.

Each JPEG block is encoded as an integer sequence of bytes, starting with the differential
DC coefficient DIFF (k), and then continuing in the zig-zag ordered AC coefficients. The
baseline JPEG encoding uses a Huffman encoding to reduce the average number of bits
required to represent the coefficients. Huffman coding is a method of variable length entropy
coding that associates a specific value with a unique code. The Huffman code is known as a
prefix code because no code is the prefix or beginning of a longer coder word. This property
makes the Huffman code uniquely decodable.

The differential DC coefficient DIFF (k) is encoded using the following sequence of steps.

1. Let m be the number of bits required to represent DIFF (k) without the sign. So for
example, the value −3 has an unsigned binary representation of 11; so in this case,
m = 2 bits.

Purdue University: Digital Image Processing Laboratories 8

Range of DIFF (k) values Bit Size (m) Huffman Code

0 0 00
−1, 1 1 010

−3,−2, 2, 3 2 011
−7 . . .− 4, 4 . . . 7 3 100
−15 . . .− 8, 8 . . . 15 4 101
−31 . . .− 16, 16 . . . 31 5 110
−63 . . .− 32, 32 . . . 63 6 1110
−127 . . .− 64, 64 . . . 127 7 11110
−255 . . .− 128, 128 . . . 255 8 111110
−511 . . .− 256, 256 . . . 511 9 1111110
−1023 . . .− 512, 512 . . . 1023 10 11111110
−2047 . . .− 1024, 1024 . . . 2047 11 111111110

Table 1: Huffman codes for representing each possible value of m for the differential
DC coefficient DIFF (k). This mapping results in the VLC encoding.

2. Use Table 1 to encode the value of m. This is referred to as the VLC.

3. If DIFF (k) ≥ 0, then take the m least significant bits of DIFF (k). If DIFF (k) < 0,
then form the 2’s complement representation of DIFF (k) − 1 and take the m least
significant bits. This step is referred to as VLI encoding. It is done to efficiently
represent the coefficient since we know that |DIFF (k)| ≤ 2m − 1.

For example when m = 2, DIFF (k) must be in the set {−3,−2, 2, 3}. Since the values
{−1, 0, 1} are not possible, we should remap the integer value to the range {0, 1, 2, 3}
so as not to waste bits.

Consider the case when DIFF (k) = −3. In this case, m = 2. Since DIFF (k) < 0,
form the 8-bit 2’s complement representation of DIFF (k) − 1 which is 11111100.
Taking the m least significant bits results in 00.

Alternatively ifDIFF (k) = 3, then the 8-bit 2’s complement representation ofDIFF (k)
is 00000011; so the 2 least significant bits are 11.

In practice, 16-bit 2’s complement arithmetic should be used to accommodate the 12
bit signed values of DIFF (k).

The result of encoding is then represented as a string of bits first containing the VLC part,
and then the VLI part.

The AC coefficients are encoded in a manner similar to the encoding of DIFF (k), but
the encoding method for the AC coefficients must be modified to efficiently represent the
long strings of zeros that result from quantization of the AC coefficients. Since each run
of zeros must terminate in a particular nonzero value, the run length may be encoded as
a pair (i,m) where i is the number of preceding zeros and m is the number of bits in the
terminal value of the run. So, for example, the sequence 0, 0, 0,−3 may be represented by
(i,m) = (3, 2). This leads to some special cases. The value (15, 0) corresponds to a run of
16 zeros and is denoted by the term ZRL or zero run length. The ZRL symbol is used when
a run with more then 16 zeros occurs. Another special case is when the run of zeros extends

Purdue University: Digital Image Processing Laboratories 9

Bit Size AC coefficient value range

0 0
1 −1, 1
2 −3,−2, 2, 3
3 −7 . . .− 4, 4 . . . 7
4 −15 . . .− 8, 8 . . . 15
5 −31 . . .− 16, 16 . . . 31
6 −63 . . .− 32, 32 . . . 63
7 −127 . . .− 64, 64 . . . 127
8 −255 . . .− 128, 128 . . . 255
9 −511 . . .− 256, 256 . . . 511
10 −1023 . . .− 512, 512 . . . 1023

Table 2: AC coefficient magnitude category for bit size

3 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 9 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

Table 3: Example of a quantized DCT block

to the end of the JPEG block. In this case, the (0, 0) pair is used to indicate an end of block
or EOB condition. The EOB symbol can be interpreted as an “escape” symbol indicating
that no more non-zero values occur in the zig-zag scanned sequence.

Each pair of values (i,m) is encoded using a Huffman table. Appendix B contains a
complete table of the typical Huffman codes (sometimes referred to as the default Huffman
table) used for the AC coefficients. The JPEG standard also allows the user to specify a
different Huffman code if desired; however, the JPEG header routines that we will provide
you do not support this flexibility.

For each run-length, the AC coefficients are encoded as follows:

1. Determine a pair (i,m) to represent the run. If there is no run of zeros, simply use
(0,m) to represent the nonzero AC coefficient.

2. Map each terminal AC coefficient to an m bit sequence denoted by V LIac.

3. Use the table of Appendix B to map the pair (i,m) to a Huffman code denoted by
V LCac.

4. Form the final code by concatenating the VLC and VLI representations, [V LCac, V LIac].

Purdue University: Digital Image Processing Laboratories 10

For example, let’s assume that we are to encode a quantized DCT block as shown in
Table 3. Also assume that it is the first block in the image. Then, the encoded bit streams
have the form:

‘011’ ← m = 2 VLC code for DC DIFF
‘11’ ← value = 3 VLI code for DC DIFF
‘11111111001’ ← V LCac of ZRL
‘11111111001’ ← V LCac of ZRL
‘11111111001’ ← V LCac of ZRL
‘111111110100’ ← V LCac of pair (2,4) for AC
‘1001’ ← V LIac for AC value = 9
‘1010’ ← V LCac of EOB

When concatenated this codes for the following bit stream.

‘011’ ‘11’ ‘111
︸ ︷︷ ︸

7F

− 11111001’
︸ ︷︷ ︸

F9

− ‘11111111
︸ ︷︷ ︸

FF

− 001’ ‘11111
︸ ︷︷ ︸

3F

− 111001’ ‘11
︸ ︷︷ ︸

E7

− 11111101
︸ ︷︷ ︸

FD

− 00’ ‘1001’ ‘10
︸ ︷︷ ︸

26

− 10’xxxxxx
︸ ︷︷ ︸

??

The “-” signs denotes the byte boundaries, and the single quotes denote groups of bits
associated with a encoded code word. As you may notice, the bit stream does not always
end on a byte boundary. If the given block is not the last block in the image, the encoded
bits for next block will be concatenated to the tail of the bit stream for the current block.
If the block is the last JPEG block, we add additional zero bits to the bit stream to ensure
that there are an integer number of bytes. This process is called zero padding.

The second line denotes the hexadecimal value associated with each byte. Notice that
the value 0xFF occurs in the sequence. However, this value is reserved for the JPEG header.
So to prevent misinterpretation as a reserved header, any occurrence of the value 0xFF must
be followed by an inserted sequence of 0x00. This is called byte stuffing. Taking the details
into consideration, we will get the following output byte sequence for the encoded JPEG
block. The actual value for the last byte will be determined after encoding of the next block.

7F F9 FF 00 3F E7 FD 26 ??

3.1 Experiment

In this section, you will implement a C program conforming to the VLC and VLI coding
scheme for the quantized DC and AC coefficients in 8x8 DCT blocks. You should first
download the JPEG utilities from the laboratory home page. This includes a variety of
C header files and subroutines that you will need. It also include the main program for
your coder. When writing the code you should not use any global variables other then those
defined in the Htables.h header file. Global variables usually result from a poor programming
style, and make debugging and maintaining code much more difficult.

1. First download the JPEG utilities from the laboratory home page. This zip file includes
the files Htables.h and JPEGutil.c. The file Htables.h contains the Huffman code tables
for VLC encoding of both the DC and AC coefficients. The file JPEGutil.c contains
subroutines for creating JPEG header and tail file structures.

Purdue University: Digital Image Processing Laboratories 11

2. The file Htables.h defines two C variables. They are complex data structures containing
information about the DC and AC Huffman code tables.

The first data structure, dcHuffman, has two components. Let m be the number of
bits in the unsigned portion of DIFF (k), then these two components are defined by:

dcHuffman.size[m] (type int) - Number of bits in the Huffman codeword for a
value of DIFF (k) with a bitsize of m.

dcHuffman.code[m][k] (type char) - An ASCII character containing the kth bit of
the Huffman codeword for a bitsize of m. Each ASCII character is either “0” or
“1” depending on the bit’s value.

The second data structure, acHuffman, has two components. Let (i,m) be the integer
pair corresponding to the run length and the bitsize as described above. Then these
two components are defined by

acHuffman.size[i][m] (type int) - Number of bits in the Huffman codeword for run
length (i,m).

acHuffman.code[i][m][k] (type char) - An ASCII character containing the kth bit
of the Huffman codeword for run length (i,m). Each ASCII character is either
“0” or “1” depending on the bit’s value.

3. Write a C subroutine BitSize with the following structure

int bitsize;

int value;

bitsize = BitSize(value);

where

• bitsize - An integer containing the value m that specifies the position of the most
significant bit in the unsigned value.

• value - The integer input.

4. Write a C subroutineVLI encode with the following structure

int bitsize;

int value;

char *block_code;

void VLI_encode(bitsize, value, block_code);

where

• bitsize - The value returned by BitSize(value) representing the number of bits in
value.

• value - The input value to be VLI encoded.

Purdue University: Digital Image Processing Laboratories 12

• block code - This pointer is used both to pass input to the routine, and pass back
output from the routine. The input is any valid ASCII character string. The
output also an character string with the VLI code appended to the end of the
string. As with any C character string, the terminal delimiter must be the NULL
symbol (0x00).

Typically, the input to this subroutine is an incomplete binary encoding of a JPEG
block. The encoding of the next coefficient is then appended to the input string
as “0” and “1” characters. The new VLI code is added with most significant bit
first.

Notice that the original character string block code must have enough memory
allocated to support the maximum possible length output binary sequence. We
recommend that you allocate a minimum of 213 = 8192 bytes for this array.

5. Write a C subroutine ZigZag with the following structure

int zigzag[64];

int **img;

int i0,j0;

void = ZigZag(img, i0, j0, zigzag);

where

• zigzag - A 1-D array of 64 integers containing the DCT coefficients for the JPEG
block starting at position (i0, j0) in zig zag order. The memory for this array
should be allocated before calling the ZigZag routine. You will use the variable
Zig defined in the Htables.h to implement this subroutine.

• img - The full set of DCT coefficients read in from the Matlab output file.

• i0 - The row number of the JPEG block.

• j0 - The column number of the JPEG block.

6. Write a C subroutineDC encode with the following structure

int dc_value;

int prev_value;

char *block_code;

void DC_encode(dc_value, prev_value, block_code);

where

• dc value - DC coefficient value in current JPEG block.

• prev value - DC coefficient value in previous JPEG block in raster order.

Purdue University: Digital Image Processing Laboratories 13

• block code - This pointer is used both to pass input to the routine, and pass
back output from the routine. The input is any valid ASCII character string.
The output also an character string with the binary code for the DC coefficient
appended to the end of the string. As with any C character string, the terminal
delimiter must be the NULL symbol (0x00).

Typically, the input to this subroutine is an character string that will be used to
store the binary encoding of a JPEG block. This input character string may be
empty, or it may contain binary characters from the previous JPEG block that
have not yet been written out to the JPEG file.

The encoding of the DC coefficient is appended to the input string as “0” and
“1” characters. The DC characters string is generated corresponding to the out-
put binary sequence produced by encoding DIFF (k). The most significant bit
should be first, with the VLC code followed by the VLI code. Use the data struc-
ture dcHuffman and the subroutine VLI encode(bit size, value) to implement this
subroutine.

Notice that the original character string block code must have enough memory
allocated to support the maximum possible length output binary sequence. We
recommend that you allocate a minimum of 213 = 8192 bytes for this array.

7. Write a C subroutineAC encode with the following structure

int *zigzag;

char *block_code;

void AC_encode(zigzag, block_code);

where

• zigzag - The 1-D array of 64 DCT coefficients in zig zag ordering.

• block code - This pointer is used both to pass input to the routine, and pass
back output from the routine. The input is any valid ASCII character string.
The output also an character string with the binary code for the AC coefficients
appended to the end of the string. As with any C character string, the terminal
delimiter must be the NULL symbol (0x00).

Typically, the input to this subroutine is an incomplete binary encoding of a
JPEG block. The encoding of the AC coefficients is then appended to the input
string as “0” and “1” characters.

The AC characters string is generated corresponding to the output binary se-
quence produced by encoding the AC coefficients in zigzag ordering. The most
significant bit should be first, with the VLC code followed by the VLI code for each
run length. Use the data structure acHuffman and the subroutine VLI encode(bit
size, value). As with any C character string, the terminal delimiter must be the
NULL symbol (0x00).

Below is a pseudo-code example of how the AC encode subroutine should be structured.

Purdue University: Digital Image Processing Laboratories 14

AC encode(zigzag, block code) {
/* Init variables */
int idx = 1 ;
int zerocnt = 0 ;
int bitsize ;

while(idx < 64) {
if(zigzag[idx] == 0) zerocnt ++ ;
else {

/* ZRL coding */
for(; zerocnt > 15; zerocnt -= 16)

block code ← strcat(block code, acHuffman.code[15][0]);
bitsize = BitSize(zigzag[idx]) ;
block code ← strcat(block code, acHuffman.code[zerocnt][bitsize]);
VLI encode(bitsize, zigzag[idx], block code) ;
zerocnt = 0 ;

}
idx ++ ;

}
/* EOB coding */
if(zerocnt) block code ← strcat(block code, acHuffman.code[0][0]);

Notice that the subroutine uses the ANSI C subroutine call strcat. The strcat subrou-
tine is used to concatenate standard C character strings.

8. Write a C subroutine Block encode with the following structure

char *block_code;

int *zigzag;

int prev_dc ;

void Block_encode(prev_dc, zigzag, block_code);

where

• prev dc - DC coefficient value in previous JPEG block in raster order.

• zigzag - The 1-D array of 64 DCT coefficients in zig zag ordering.

• block code - This pointer is used both to pass input to the routine, and pass back
output from the routine. The input is any valid ASCII character string. The
output also an character string with the binary code for the entire JPEG block.
As with any C character string, the terminal delimiter must be the NULL symbol
(0x00).

This routine simply calls DC encode followed by AC encode to encode the entire
block of quantized DCT coefficients.

9. Write a C subroutine Convert encode with the following structure

Purdue University: Digital Image Processing Laboratories 15

unsigned char *byte_code;

char *block_code;

int length;

length = Convert_encode(block_code,byte_code);

where

• block code - This pointer is used both to pass input to the routine, and pass back
output from the routine. The input is a character string containing the binary
encoding of one or more, complete or partial JPEG blocks. This character string
is produced by the Block encode subroutine. The output is a character string
containing binary characters that have not yet been encoded into the byte code
array. In general, the returned string will be of length < 8 and will contain the
trailing bits that would not completely fill a full byte.

The array block code should be allocated outside the Block encode subroutine, and
should contain a minimum of 213 = 8192 elements so that the array is guaranteed
not to overflow.

• byte code This is the converted output byte sequence produced by mapping the
characters of block code to the bits of unsigned characters. This output must

include byte stuffing in the final byte sequence. The memory for this array should
be allocated once in the main program as an array of 1024 unsigned characters
since this is larger than the maximum possible length of the byte sequence.

• length - The number of bytes in the array byte code.

10. Write a C subroutine Zero pad with the following structure

char *block_code;

unsigned char byte_value;

byte_value = Zero_pad(block_code);

where

• block code - A character string containing the remaining bytes after the last JPEG
block has been encoded. This string must have length greater than 0 and less than
8. This character string is produced by the Convert encode subroutine.

• byte value - This is the converted output byte produced by padding additional
zeros to block code.

This routine is used only one time for the last JPEG block.

11. The C main program JPEG encode is included in the JPEG utilities you have down-
loaded. This main routine has been written for you to handle input from command line
and reading the Matlab file DCT coefficients file. The main program has been written
so that it has the following command line structure.

JPEG_encode <Quant scale factor> <matlab file name> <output file name>

Purdue University: Digital Image Processing Laboratories 16

where Quant scale factor is defined as γ in eq (1).

This main program calls the C subroutine JPEG encode to perform the JPEG encoding.
This subroutine has the following structure.

int **input_img ;

int height;

int width;

FILE *outfp;

void jpeg_encode(input_img,row,column,outfp);

where

• input img - Image of DCT coefficients read in from matlab output file.

• height - Number of rows in image.

• width - Number of columns in image.

• outfp - File pointer to output JPEG image.

This subroutine will need to call the subroutine put header at the beginning and put tail
at the end. These two routines write out complex binary header and trailer information
that is necessary for a standard JPEG decoder to interpret your data. For details on
their function refer to Appendix A. Right before put tail, don’t forget to call Zero pad
routine.

The call structure of these two routines are as follows:

int width;

int height;

int quant[8][8];

FILE *fileout;

void put_header(width,height,quant,fileout);

where

• width - Number of columns in source image.

• height Number of rows in source image.

• quant - The 8x8 quantization matrix defined in Htables.h. This variable should

be the same as the variable used in section 2.1. That is, you need to scale the
quant matrix properly as in eq (1).

• fileout - Output file pointer.

FILE *fileout;

void put_tail(fileout);

Purdue University: Digital Image Processing Laboratories 17

where

• fileout - Output file pointer.

12. Generate an output JPEG image for γ = 0.25, 1, and 4. For each of the three output
JPEG images, read them into xv and print out the images.

13. Congratulations! - Your are done. Go to sleep.

Section 3 Report:

Do the following:

1. Hand in C code for the subroutines BitSize, VLI encode, ZigZag, DC encode,
AC encode, Block encode, Convert encode, and Zero pad.

2. Hand in C code for your main program JPEG encode.

3. Email the encoded image using γ = 1 as an attachment to the course TA.

4. Hand in the three printouts from xv.

References

[1] ISO/IEC 10918-1,1993(E)

[2] G.K.Wallace. The JPEG still picture compression standard. Communications of the
ACM, Vol. 34, No.4:30-44,April 1991.

Purdue University: Digital Image Processing Laboratories 18

TISO0840-93/d020

Compressed image data

SOI Frame EOI

Tables/
misc.

[

[Frame header DNL
segment

Scan2

[

[[

[

Scan 1

[

[Scan last

Tables/
misc.

[

[

Scan header [ECS0

Scan

Frame

ECS last-1 ECS lastRST last-1]

Entropy-coded segment 0 Entropy-coded segment last

<MCU >, <MCU >, · · · <MCU >1 2 Ri <MCU >, <MCU >, · · · <MCU >n n + 1 last

RST0

Figure 5: Syntax for sequential DCT-based operation

A Basic JPEG Header Formats

This appendix describes the structure of a simple JPEG header. The header includes both the
quantization table and the Huffman coding tables for the DC and AC coefficients. However,
the Huffman tables are themselves in coded form, and we do not explain the details of this
coding process.

A.1 Start of Image

Figure 5 shows the general structure of a JPEG file. Each JPEG file starts with a special
16-bit sequence called start of image (SOI). This sequence indicates the beginning of an
image, and the start of a frame.

SOI: (16 bit) Start of image is given by SOI(0xFFD8).

A.2 Quantization Table

The first element of a frame is the quantization table. The quantization table starts with
the define quantization table (DQT) symbol. This is then followed by a sequence of symbols
that gives specific information about the type of quantization and its values.

DQT (16 bit) Define Quantization table symbol is 0xFFDB.

Lq: (16 bit) Quantization table length.

Purdue University: Digital Image Processing Laboratories 19

Q
1

Q Q
0 63

Lq Pq Tq

TISO0880-93/d024

DQT

Define quantization table segment

Multiple (t = 1, ..., n)

Figure 6: Quantization table syntax

C1 1 1 1 C C

SOF PLf Y X Nf

H V Tq 2 2 V2H Tq 2 Nf Nf Nf NfH V Tq

n

TISO0850-93/d021

Frame header

Frame component-specification parameters

Component-specification
parameters

Figure 7: Frame Header syntax

Pq: (4 bit) Table element Qk’s precision. ′0′ = 8 bit, ′1′ = 16 bit.

Tq: (4 bit) Quantization table destination identifier.

Qk: (8 bit) Quantization table elements in zig-zag scan order.

We use a typical quantization table in Figure 3 for the luminance component. For base-
line DCT JPEG, the quantizer table is denoted as follows:

FF DB 00 43 00

10 0B 0C 0E 0C 0A 10 0E 0D 0E 12 11 10 13 18 28

1A 18 16 16 18 31 23 25 1D 28 3A 33 3D 3C 39 33

38 37 40 48 5C 4E 40 44 57 45 37 38 50 6D 51 57

5F 62 67 68 67 3E 4D 71 79 70 64 78 5C 65 67 63

A.3 Frame Header

The frame header starts after the quantization table. Generally, the frame contains some
tables, headers and scan segments. In the baseline encoder, we will use only one scan
segment, one luminance quantization table, and two Huffman tables, one each for the DC
and AC coefficients.

The frame header specifies the source image characteristics, and encoded component
specific parameters. Baseline DCT JPEG is designated by a start of frame zero (SOF0)
marker.

SOF0 (16 bit) The start of frame zero maker is 0xFFC0.

Purdue University: Digital Image Processing Laboratories 20

b g

TISO0890-93/d025

DHT Lh Tc Th L 1 L 2 L 16

Define Huffman table segment

Symbol-length
assignment

Multiple (t = 1, ..., n)

Symbol-length assignment parameters

V1,1 V
1,2 V1,L

1
V2,1 V2,2 V2,L

2
V16,1 V16,2 V16,L

16

Figure 8: Huffman table syntax

Lf: (16 bit) Frame header length in bytes.

P: (8 bit) Bits/Sample precision.

Y: (16 bit) Number of lines in the source image.

X: (16 bit) Number of samples in one line.

Nf: (8 bit) Number of image component in the frame.

C1: (8 bit) Component identifier label.

H1: (4 bit) Horizontal sampling factor.

V1: (4 bit) Vertical sampling factor.

Tq1: (8 bit) Quantization table destination selector.

For example, with a 512x768 luminance only source image, the frame header content looks
like following in hexadecimal numbers: FF C0 0B 08 03 00 02 00 01 11 00

A.4 Huffman code Tables

The Huffman tables are located after the frame header. Their syntax is shown in Figure 8.
Like the quantization table definition, it starts with a define Huffman table (DHT) symbol.
The structure of the Huffman table is given by:

DHT (16 bit) The define Huffman table symbol is 0xFFC4.

Lh: (16 bit) Huffman table definition length

Tc: (4 bit) Table class, 0 = DC table, 1 = AC table

Th: (4 bit) Huffman table destination identifier

Li: (8 bit) Number of Huffman codes of length i. (1 ≤ i ≤ 16)

Vi,j: (8bit) Value associated with each Huffman code.

Purdue University: Digital Image Processing Laboratories 21

2 2 2

NsTd NsTa

NsCs

SOS Ls Ns Ss Se Ah Al

Cs1 Td1 Ta1 Cs Td Ta

TISO0860-93/d022

Scan header

Component-specification
parameters

Scan component-specification parameters

Figure 9: Scan Header Syntax

Table 1 content is converted into a DHT segment. A DC Huffman table example for a
typical Huffman code is shown below

FF C4 00 1F 00

00 01 05 01 01 01 01 01 01 00 00 00 00 00 00 00

00 01 02 03 04 05 06 07 08 09 0A 0B

The first row shows the DHT to Th field. The second row represents L1 . . . L16. Since L3

value is 05, it is interpreted as that there are 5 codes of length 3 bit in the DC Huffman
code table, and they are {01 02 03 04 05} in the third row. They corresponds to Table 1.
For AC Huffman table definition example, refer to [1] Annex K.3.3.2. The only difference is
that they need 162 Vi,j entries.

A.5 Scan Segment

This segment is the last parameter segment before the actual encoded data appear. It
specifies which component was coded and which Huffman tables were used. The following
parameters are to be defined.

SOS (16 bit) Start scan segment code given by 0xFFDA.

Ls: (16 bit) Scan header length.

Ns: (8 bit) Number of image components in this scan segment.

Csj: (8 bit) scan component selector.

Tdj: (4 bit) DC Huffman table destination selector.

Taj: (4 bit) AC Huffman table destination selector.

Ss: (8 bit) Start of spectral selection. Specify the first DCT coefficient in zig-zag order,to
be coded.

Se: (8 bit) End of spectral selection. Specify the last DCT coefficient in zig-zag order, to
be coded.

Purdue University: Digital Image Processing Laboratories 22

Ah: (4 bit) Set to zero in Sequential DCT.

Al: (4 bit) Set to zero in Sequential DCT.

The following example shows the bit stream from the SOS to the EOI symbols for an
achromatic baseline DCT JPEG. The symbols ’zz ww yy . . . ’ represent the Huffman codes
for the coefficients of the first 8× 8 DCT block.

FF DA 00 08 % Start of Scan marker

01 01 00 00 3f 00

zz ww yy . . . % encoded data stream

. . .

. . .

FF D9 % EOI marker

A.6 End of Image

The JPEG file is ended by the 16-bit end of image (EOI) symbol given by 0xFFD9.

Purdue University: Digital Image Processing Laboratories 23

B Typical AC Huffman Table

Run/Size Code length Code word

0/0 (EOB) 4 1010
0/1 2 00
0/2 2 01
0/3 3 100
0/4 4 1011
0/5 5 11010
0/6 7 1111000
0/7 8 11111000
0/8 10 1111110110
0/9 16 1111111110000010
0/A 16 1111111110000011

1/1 4 1100
1/2 5 11011
1/3 7 1111001
1/4 9 111110110
1/5 11 11111110110
1/6 16 1111111110000100
1/7 16 1111111110000101
1/8 16 1111111110000110
1/9 16 1111111110000111
1/A 16 1111111110001000

2/1 5 11100
2/2 8 11111001
2/3 10 1111110111
2/4 12 111111110100
2/5 16 1111111110001001
2/6 16 1111111110001010
2/7 16 1111111110001011
2/8 16 1111111110001100
2/9 16 1111111110001101
2/A 16 1111111110001110

3/1 6 111010
3/2 9 111110111
3/3 12 111111110101
3/4 16 1111111110001111
3/5 16 1111111110010000
3/6 16 1111111110010001
3/7 16 1111111110010010
3/8 16 1111111110010011
3/9 16 1111111110010100
3/A 16 1111111110010101

Table 4: Typical Huffman table for AC coefficients(sheet 1 of 4)

Purdue University: Digital Image Processing Laboratories 24

Run/Size Code length Code word

4/1 6 111011
4/2 10 1111111000
4/3 16 1111111110010110
4/4 16 1111111110010111
4/5 16 1111111110011000
4/6 16 1111111110011001
4/7 16 1111111110011010
4/8 16 1111111110011011
4/9 16 1111111110011100
4/A 16 1111111110011101

5/1 7 1111010
5/2 11 11111110111
5/3 16 1111111110011110
5/4 16 1111111110011111
5/5 16 1111111110100000
5/6 16 1111111110100001
5/7 16 1111111110100010
5/8 16 1111111110100011
5/9 16 1111111110100100
5/A 16 1111111110100101

6/1 7 1111011
6/2 12 111111110110
6/3 16 1111111110100110
6/4 16 1111111110100111
6/5 16 1111111110101000
6/6 16 1111111110101001
6/7 16 1111111110101010
6/8 16 1111111110101011
6/9 16 1111111110101100
6/A 16 1111111110101101

7/1 8 11111010
7/2 12 111111110111
7/3 16 1111111110101110
7/4 16 1111111110101111
7/5 16 1111111110110000
7/6 16 1111111110110001
7/7 16 1111111110110010
7/8 16 1111111110110011
7/9 16 1111111110110100
7/A 16 1111111110110101

Table 5: Typical Huffman table for AC coefficients(sheet 2 of 4)

Purdue University: Digital Image Processing Laboratories 25

Run/Size Code length Code word

8/1 9 111111000
8/2 15 111111111000000
8/3 16 1111111110110110
8/4 16 1111111110110111
8/5 16 1111111110111000
8/6 16 1111111110111001
8/7 16 1111111110111010
8/8 16 1111111110111011
8/9 16 1111111110111100
8/A 16 1111111110111101

9/1 9 111111001
9/2 16 1111111110111110
9/3 16 1111111110111111
9/4 16 1111111111000000
9/5 16 1111111111000001
9/6 16 1111111111000010
9/7 16 1111111111000011
9/8 16 1111111111000100
9/9 16 1111111111000101
9/A 16 1111111111000110

A/1 9 111111010
A/2 16 1111111111000111
A/3 16 1111111111001000
A/4 16 1111111111001001
A/5 16 1111111111001010
A/6 16 1111111111001011
A/7 16 1111111111001100
A/8 16 1111111111001101
A/9 16 1111111111001110
A/A 16 1111111111001111

B/1 10 1111111001
B/2 16 1111111111010000
B/3 16 1111111111010001
B/4 16 1111111111010010
B/5 16 1111111111010011
B/6 16 1111111111010100
B/7 16 1111111111010101
B/8 16 1111111111010110
B/9 16 1111111111010111
B/A 16 1111111111011000

Table 6: Typical Huffman table for AC coefficients(sheet 3 of 4)

Purdue University: Digital Image Processing Laboratories 26

Run/Size Code length Code word

C/1 10 1111111010
C/2 16 1111111111011001
C/3 16 1111111111011010
C/4 16 1111111111011011
C/5 16 1111111111011100
C/6 16 1111111111011101
C/7 16 1111111111011110
C/8 16 1111111111011111
C/9 16 1111111111100000
C/A 16 1111111111100001

D/1 11 11111111000
D/2 16 1111111111100010
D/3 16 1111111111100011
D/4 16 1111111111100100
D/5 16 1111111111100101
D/6 16 1111111111100110
D/7 16 1111111111100111
D/8 16 1111111111101000
D/9 16 1111111111101001
D/A 16 1111111111101010

E/1 16 1111111111101011
E/2 16 1111111111101100
E/3 16 1111111111101101
E/4 16 1111111111101110
E/5 16 1111111111101111
E/6 16 1111111111110000
E/7 16 1111111111110001
E/8 16 1111111111110010
E/9 16 1111111111110011
E/A 16 1111111111110100

F/0 (ZRL) 11 11111111001
F/1 16 1111111111110101
F/2 16 1111111111110110
F/3 16 1111111111110111
F/4 16 1111111111111000
F/5 16 1111111111111001
F/6 16 1111111111111010
F/7 16 1111111111111011
F/8 16 1111111111111100
F/9 16 1111111111111101
F/A 16 1111111111111110

Table 7: Typical Huffman table for AC coefficients(sheet 4 of 4)

