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1 Introduction

This laboratory explores the use of maximum a posteriori (MAP) estimation of images from
noisy and blurred data using both Gaussian and non-Gaussian Markov random field (MRF)
prior models. This estimation methodology is widely useful for problems of image restoration
and reconstruction because it can be used to explicitly model both measurement noise and
prior knowledge regarding the image to be estimated.

In order to use a MAP estimation framework, we will need three major components:

• Prior model - This is the probability distribution that we assume for the unknown
image to be estimated. We will use and MRF prior model because it captures essential
characteristics of images while remaining computationally tractable.

• Measurement noise model - We introduce a general model for the measurement which
consists of a linear blurring operator followed by additive Gaussian noise.

• Optimization method - The MAP estimation framework results in a high dimensional
optimization problem that must be solved. There are many ways to solve this problem,
but we introduce a useful optimization technique known as iterative coordinate descent
(ICD).

All solutions for this laboratory should be implemented using the JAX pack-
age in Python. It is important that students learn to program in JAX because it is efficient
and highly portable, but it requires some experience to construct a high quality program
that can be easily debugged.

1.1 Preparation for JAX

In this lab, you are required to use JAX. To help you get started, the GitHub repository
jax startup offers useful resources for setup. You can retrieve the jax startup repository
by running the following command:

git clone git@github.com:cabouman/jax_startup

Questions or comments concerning this laboratory should be directed to Prof. Charles A. Bouman,
School of Electrical and Computer Engineering, Purdue University, West Lafayette IN 47907; (765) 494-
0340; bouman@ecn.purdue.edu
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Your first task is to install the necessary packages for this lab. You can follow the
instructions in the README of the jax startup repository to set up the conda environment
and install the required packages.

It is also strongly recommended that you run and study the FIR demo provided in the
repository. You can run the demo by following the instructions in the README. In the
demo, you will learn how to use the jax.vmap function, which is essential for completing
this lab.

2 MAP Estimation with Gaussian Priors

This first section of the lab introduces Markov random field (MRF) image models along with
the basic techniques required for MAP estimation with a Gaussian prior. In this case, the
optimization is quadratic.

2.1 Prior Model Formulation

For the purposes of this laboratory, the random field {Xs}s∈S denotes a image with continu-
ously valued pixels taking values on the lattice S with N points. Furthermore, X is assumed
to be an MRF with a strictly positive density; so by the Hammersly-Clifford theorem, its
density must have the form of a Gibbs distribution. We also make the common assumption
that the Gibbs distribution for X uses only pairwise interactions. In this case, the set of all
cliques is given by

C = {{i, j}| i ∈ ∂j for i, j ∈ S} ,

where ∂j denotes the neighbors of j. For this laboratory, we use an 8-point neighborhood
system.

In many practical applications, the Gibbs density of the MRF is assume to have the
following form

p(x) =
1

z
exp







−
∑

{i,j}∈C

bi,jρ(xi − xj)







, (1)

where ρ(·) is a real valued, positive and symmetric function and z is the normalizing constant
known as the partition function. There are a wide variety of common choices for this function,
but for this portion of the laboratory we focus on a class of MRF’s known as generalized
Gaussian MRF’s with the form

p(x) =
1

z(g, p, σ)
exp







− 1

pσp

∑

{i,j}∈C

gi,j |xi − xj|p






, (2)

(3)

where z(g, p, σ) is the normalizing constant for the distribution, and we assume that the
function gi,j is normalized so that

1 =
∑

j∈∂i

gi,j . (4)
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It can be shown that for this distribution z(g, p, σ) = z(g, p, 1)σN where N is the number of
lattice points. Using this result, we see that

p(x) =
1

z(g, p, 1)σN
exp







− 1

pσp

∑

{i,j}∈C

gi,j |xi − xj|p






. (5)

For simplicity, we assume that S is a rectangular lattice, that the function g is shift
invariant so that gi,j = gi−j = gj−i, and we use a circular boundary condition. With these
assumptions, (4) holds whenever

1 =
∑

j∈∂0

g0−j .

In this case, it can be shown that

p(xi|xj j 6= i) = p(xi|xj, j ∈ ∂i) (6)

=
1

z
exp







− 1

pσp

∑

j∈∂i

gi−j |xi − xj|p






. (7)

For the special case of p = 2, the GGMRF is Gaussian. In this case, the Gibbs distribution
of (5) can be written in Matrix form as

p(x) =
1

(2πσ)(N/2)
|B|1/2 exp

{

− 1

2σ2
xtBx

}

(8)

where x is a vectorized form of the image and B is a symmetric positive definite matrix with
entries

Bi,j = δi−j − gi,j .

For a GMRF, the conditional density of a pixel is given by

p(xi|xj j 6= i) =
1√
2πσ2

exp











− 1

2σ2



xi −
∑

j∈∂i

gi−jxj





2










. (9)

So we can see that the conditional expectation and variance are given by

E [xi|xj, j 6= i] =
∑

j∈∂i

gi−jxj (10)

V ar [xi|xj, j 6= i] = σ2 . (11)

Using the expression of (5), it can be shown that the maximum likelihood estimator for the
scale parameter σ of the GGMRF is given by

σ̂p =
1

N

∑

{i,j}∈C

gi,j |xi − xj|p . (12)

For the following section problems, the image img04.tif will be modeled using a GGMRF
with a circular boundary conditions with parameters gi to be given by the following 2-D
array of values

1/12 1/6 1/12
1/6 0 1/6
1/12 1/6 1/12

(13)
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where the g0 = 0 term is at the center of the array. Furthermore, the pixel values of the
image fall in the range [0, 255] and should not be rescaled.

Section Problems:

1. Show that for the distribution of (2) the normalizing constant has the form z(g, p, σ) =
z(g, p, 1)σN where N is the number of lattice points (i.e. pixels).

2. Use the result of equation (5) to derive the ML estimate of σp shown in (12).

3. Compute the noncausal prediction error for the image img04.tif

ei = xi −
∑

j∈∂i

gi−jxj

and display it as an image by adding an offset of 127 to each pixel. Clip any value
which is less than 0 or greater than 255 after adding the offset of 127.

4. Compute σ̂ML the ML estimate of the scale parameter σ for values of p in the range
0.1 ≤ p ≤ 2. Do not include cliques that fall across boundaries of the image. Plot σ̂ML

(not σ̂p
ML) versus p for p ranging from 0.1 to 2.

2.2 MAP Restoration with Additive Noise and Gaussian Prior

In this section, you will use a Gaussian MRF to compute the MAP estimate of an image
that has been corrupted using additive Gaussian noise. Assume that the noisy image Y is
related to the noiseless image X by

Y = X +W ,

where W is i.i.d. Gaussian noise with mean 0 and variance σ2
W = 42. Furthermore, as-

sume that X is a Gaussian MRF with noncausal prediction variance of σ2
x and a noncausal

prediction filter of gi shown in (13).

The MAP estimate is given by

x̂ = argmax
x

{

px|y(x|y)
}

= argmax
x
{log p(y|x) + log p(x)} ,

where

p(y|x) = 1

(2πσ2
W )N/2

exp

{

− 1

2σ2
W

∑

i∈S

(yi − xi)
2

}

,

and

p(x) =
1

zσN
x

exp







− 1

2σ2
x

∑

{i,j}∈C

gi,j(xi − xj)
2







.

So the MAP estimate of x is given by

x̂ = argmin
x







1

2σ2
W

∑

i∈S

(yi − xi)
2 +

1

2σ2
x

∑

{i,j}∈C

gi,j(xi − xj)
2







, (14)
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and the cost function being minimized is given by

c(x) =
1

2σ2
W

∑

i∈S

(yi − xi)
2 +

1

2σ2
x

∑

{i,j}∈C

gi,j(xi − xj)
2 . (15)

In some cases, the measurement noise variance, σ2
W , may also be unknown. In this case,

σ2
W is sometimes referred to as a nuisance parameter because its value may not be of direct

interest, but it is require in order to get an accurate estimate of x. One approach to the
estimation of σ2

W is to jointly optimize the posterior distribution over x and σ2
W .

(x̂, σ̂2
W ) = argmax

x,σ2

W

{

px|y(x|y, σ2
W )
}

(16)

= argmax
x,σ2

W

{

log p(y|x, σ2
W ) + log p(x)

}

It can be shown that the optimization with respect to σ2
W results in

σ̂2
W =

1

N

∑

i∈S

(yi − xi)
2 . (17)

Substituting this into the expression for the joint optimization results in

x̂ = argmin
x







N

2
log

(

∑

i∈S

(yi − xi)
2

)

+
1

2σ2
x

∑

{i,j}∈C

gi,j(xi − xj)
2







, (18)

which results in a new cost function given by

c(x) =
N

2
log

(

∑

i∈S

(yi − xi)
2

)

+
1

2σ2
x

∑

{i,j}∈C

gi,j(xi − xj)
2 . (19)

In practice, direct optimization of the cost function in equation (18) can be difficult,
so it is often easier to iteratively minimize with respect to x and then σ2

W . This can be
accomplished by repeatedly applying the following pair of update equations.

σ̂2
W ← 1

N

∑

i∈S

(yi − x̂i)
2 (20)

x̂ ← argmin
x







1

2σ̂2
W

∑

i∈S

(yi − xi)
2 +

1

2σ2
x

∑

{i,j}∈C

gi,j(xi − xj)
2







(21)

Section Problems:
1. Show that the cost function of (15) is strictly convex.

2. Derive equations (17) and (18) for the joint MAP estimation of x and σ2
W .

3. Does the application of update (20) followed by (21) reduce the cost function of (19)?
Why?

4. Let (x̂, σ̂2
W ) denote the exact solution to the optimization of equation (16). Is σ̂2

W the
ML estimate of σ2

W ? Is it the MAP estimate? Justify your answer.
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2.3 Iterative Coordinate Descent Optimization (ICD)

The iterative coordinate decent (ICD) algorithm works by sequentially minimizing the cost
function of (14) with respect to each pixel. The update of pixel xi is given by the following
expression

xi ← argmin
u







1

2σ2
W

(yi − u)2 +
1

2σ2
x

∑

j∈∂i

gi,j(u− xj)
2







Differentiating this expression and solving for the minimum results in the ICD update equa-
tion

xi ←
yi +

σ2

W

σ2
x

∑

j∈∂i gi,jxj

1 +
σ2

W

σ2
x

In many problems, it is known for physical reasons that the image x must be positive
(e.g. reflected or emitted light energy must be positive). In this case, it is useful to impose a
positivity constraint on the solution since this constraint can improve the restoration quality.
This can be done very simply by constraining the ICD updates to be positive.

xi ← max











0,
yi +

σ2

W

σ2
x

∑

j∈∂i gi,jxj

1 +
σ2

W

σ2
x











In this case, the standard ICD algorithm then has the form

Standard ICD Algorithm:

1. Set K = desired number of iterations

2. Select desired values of σx and σW

3. For each i ∈ S /* Initialize with ML estimate */

xs ← yi

4. For k = 0 to K − 1

(a) For each i ∈ S

xi ← max











0,
yi +

σ2

W

σ2
x

∑

j∈∂i gi,jxj

1 +
σ2

W

σ2
x











Section Problems:
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1. Show that the costs resulting from ICD updates forms a monotone decreasing sequence
that is bounded below.

2. Show that any local minimum of the cost function of (15) is also a global minimum.

3. Use the monochrome image img04.tif as x and produce a noisy image y by adding i.i.d.
Gaussian noise with mean zero and σ2

W = 162. Approximate y by truncating the pixels
to the range [0, · · · 255]. Print out the image Y .

4. Compute the MAP estimate of X using 20 iterations of ICD optimization. Use σ2
x = σ̂2

x

the ML estimate of the scale parameter computed for p = 2, and σ2
W = 162. Print out

the resulting MAP estimate.

5. Plot the cost function of (14) as a function of the iteration number for the experiment
of step 4.

6. Repeat step 4 for σ2
x = 5 ∗ σ̂2

x, and σ2
x = (1/5) ∗ σ̂2

x.

2.4 MAP Restoration from Blurred/Noisy Image with Gaussian
Prior

In this section, you will restore an image that has been blurred and then corrupted by
additive Gaussian noise. For this problem, it is best to think of the images Y and X as
being N dimensional column vectors formed by listing the pixels in raster order. In this
case, a linear space-invariant filter can be represented by a N ×N matrix transform H. So
Y is given by

Y = H X +W

where H is a circulant-block-circulant matrix that implements a 2-D shift invariant filter
applied with circular boundary conditions that has an impulse response of

1/81 2/81 3/81 2/81 1/81
2/81 4/81 6/81 4/81 2/81
3/81 6/81 9/81 6/81 3/81
2/81 4/81 6/81 4/81 2/81
1/81 2/81 3/81 2/81 1/81

(22)

where the 9/81 term is at the center of the filter. In this case, the cost functional for MAP
estimation has the form

c(x) =
1

2σ2
W

||y −Hx||2 + 1

2σ2
x

∑

{i,j}∈C

gi,j(xi − xj)
2 (23)

For this type of problem, the ICD iterations should be computed using a state recursion to
reduce computation. First, we express the MAP estimate using matrix notation

x̂ = argmin
x≥0







1

2σ2
W

||y −Hx||2 + 1

2σ2
x

∑

{i,j}∈C

gi,j(xi − xj)
2







, (24)
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where x ≥ 0 indicates that the optimization is constrained to have positive pixel values. By
defining the error vector e = y −Hx, the ICD update for each pixel xi then has the form

v ← xi (25)

xi ← argmin
u≥0







1

2σ2
W

||e−H∗,i(u− v)||2 + 1

2σ2
x

∑

j∈∂i

gi,j(u− xj)
2







(26)

e ← e−H∗,i(xi − v) (27)

whereH∗,i denotes the i
th column of the matrixH. The update of (26) can be more efficiently

expressed by exploiting the quadratic structure of the data term, and using the relationship

xi ← argmin
u≥0







θ1(u− v) +
1

2
θ2(u− v)2 +

1

2σ2
x

∑

j∈∂i

gi,j(u− xj)
2







(28)

where

θ1 = −etH∗,i

σ2
W

(29)

θ2 =
||H∗,i||2
σ2
W

(30)

This results in the following ICD algorithm when the prior distribution is Gaussian and a
blurring filter is included in the forward model.

ICD Algorithm with Blurring Filter:

1. Set K = desired number of iterations

2. Select desired values of σx and σW

3. Initialize x← y

4. Initialize e← y −Hx

5. For k = 0 to K − 1

(a) For each i ∈ S

v ← xi

θ1 ← −etH∗,i

σ2
W

θ2 ←
||H∗,i||2
σ2
W

xi ← max







0,
θ2v − θ1 +

1
σ2
x

∑

j∈∂i gi,jxj

θ2 +
1
σ2
x







e ← e−H∗,i(xi − v)
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Section Problems:

1. Use the monochrome image img04.tif as X and produce a blurred and noisy image
Y . To do this, first apply the blurring filter of (22) with circular boundary conditions;
then add noise with a variance of σ2

W = 42. Approximate Y by truncating the pixels
to the range [0, · · · , 255]. Print out the image Y .

2. Compute the MAP estimate ofX using 20 iterations for coordinate decent optimization
with σ2

x = σ̂2
x the ML estimate of σx for p = 2, and σ2

W = 42. Print out the resulting
MAP estimate.

3. Plot the cost function of equation 23 as a function of iteration number.

3 MAP Estimation with Non-Gaussian Prior

In this section, we introduce some of the basic methods for computing the MAP estimate
with non-Gaussian prior models. A key component of these methods is the use of com-
putational efficient algorithms for solving the line-search problems that commonly arrise in
non-quadratic optimization.

3.1 Basic Techniques for MAP Restoration with non-Gaussian
Prior

In this section, you will compute the MAP estimate of a image with linear blurring and noise
as in the previous section, but in addition, you will use a non-Gaussian prior model formed
by a GGMRF with p = 1.20. For this problem, the cost function to be minimized has the
form

c(x) =
1

2σ2
W

||y −Hx||2 + 1

pσp
x

∑

{i,j}∈C

gi,j|xi − xj|p (31)

and the MAP estimate is given by

x̂ = argmin
x≥0







1

2σ2
W

||y −Hx||2 + 1

pσp
x

∑

{i,j}∈C

gi,j|xi − xj|p






, (32)

In this case, the update of each pixel does not have a closed form, so it can only be
expressed in terms of a minimization with respect to a scalar value u. This results in the
following ICD algorithm with blurring filter H and GGMRF prior.
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ICD Algorithm with Blurring Filter and GGMRF Prior:

1. Set K = desired number of iterations

2. Select desired values of σx and σW

3. Initialize x← y

4. Initialize e← y −Hx

5. For k = 0 to K − 1

(a) For each i ∈ S

v ← xi

θ1 ← −etH∗,i

σ2
W

θ2 ←
||H∗,i||2
σ2
W

xi ← argmin
u≥0







θ1(u− v) +
1

2
θ2(u− v)2 +

1

pσp
x

∑

j∈∂i

gi,j |u− xj|p






e ← e−H∗,i(xi − v)

The key to implementing these equations is the computation of the minimization in
equation (33). This can be done by rooting the derivative of the equation.

θ1 + θ2(u− v) +
1

σp
x

∑

j∈∂i

gi,j|u− xj|p−1sign(u− xj) = 0 (33)

When the weights gi,j are positive, then the solution of this equation must fall in the range
[low, high] where

low = min

{

xj for j ∈ ∂i,

(

v − θ1
θ2

)}

(34)

high = max

{

xj for j ∈ ∂i,

(

v − θ1
θ2

)}

(35)

Using these bounds, the solution to (33) can be computed using a half interval search method.
The routines solve.c and solve.h are included in the C-code provided for this laboratory.
These routines can be used to root any expression given initial low and high starting points.
The syntax of the solve routine is:

double solve(

double (*f) (double x, void * pblock),

void * pblock, /* pointer to structure containing function parameters */
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double a, /* low bound on solution */

double b, /* upper bound on solution */

double err, /* accuarcy of solution */

int *code /* error code */

)

The variable f is a function pointer which should point to the a function that evaluates
expression to be rooted; in this case, the left-hand-side of (33). The function f should be
written so that it is a function of a single argument x and a pointer to structure containing
any additional parameters. For this problem, the structure should contain the parameters
θ1 along θ2 with the neighboring pixel values. The variables a and b are used to give low
and high values to start the search, and err is a variable which specifies the precision of the
rooting operation. The variable code is used to return error codes when the search is not
successful.

An example named SolveExample is provided in along with the C-code repository that
shows how to use the solve function for this section.

Section Problems:

1. Use the noisy and blurred image from Section 2.4 as the image y, and compute the
MAP estimate ofX using 20 iterations of coordinate decent optimization with p = 1.20,
σ1.2
x = σ̂1.2

x (i.e. the ML estimate of σ for p = 1.2), σ2
W = 42, and err = 1e-7. Print

out the resulting MAP estimate.

2. Produce two restorations using 20 ICD iterations with the parameters of problem 1
above, but with σx = 5∗σ̂x and σx = (1/5)∗σ̂x. Print out the resulting MAP estimates.

3. Plot the cost function of equation 31 as a function of iteration number.

3.2 MAP Restoration using Majorization to Optimize non-Gaussian
Cost Function

In this section you will restore the same image that you restored in the previous section,
except this time you will use majorization techniques to solve the associated optimization
problem. You should find that using majorization makes your program run quite a bit faster
while converging to the same solution.

For this part of the lab, we will be using the q-Generalized GMRF (QGGMRF) as
our prior model rather than the GGMRF. The cost function to be minimized when using
the QGGMRF prior is given by:

c(x) =
1

2σ2
W

||y −Hx||2 + 1

pσp
x

∑

{i,j}∈C

gi,j|xi − xj|p






∣

∣

∣

xi−xj

Tσx

∣

∣

∣

q−p

1 +
∣

∣

∣

xi−xj

Tσx

∣

∣

∣

q−p





 (36)

Observe that the prior term in the above cost function is not generally quadratic. How-
ever, if there was some way to convert the minimization of such a function into the mini-
mization of a quadratic function (similar the the form of the minimization in Section 2.4),
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we could abandon the solve line search routine in favor of a simpler (and faster) method.
It turns out that we can find a quadratic function to substitute for equation 36. With this
goal in mind, we turn to the symmetric bound method of majorization in order to find
this quadratic substitute function. We begin by noting that each potential function of the
form

p(x) =
1

z







−
∑

{s,r}∈P

bs,rρ(xs − xr)







(37)

is upper bounded by a surrogate function that is a symmetric and quadratic function of
∆, where ∆ is defined as xs − xr. Using this assumption, such a surrogate function has the
form

ρ(∆;∆′) =
a2
2
∆2 (38)

where a2 is a function of ∆′. In order to determine a2, we match the gradients of ρ(∆)
and ρ(∆;∆′) at ∆ = ∆′ to yield

a2 =
ρ′(∆′)

∆′
(39)

which results in the following symmetric bound surrogate function,

ρ(∆;∆′) =















ρ′(∆′)
2∆′

if ∆′ 6= 0

ρ′′(0)
2

if ∆′ = 0

.

It can subsequently be shown that the MAP surrogate cost function is given by

Q(x; x′) =
1

2σ2
W

||y −Hx||2 +
∑

s,r∈P

bs,rρ
′(x′

s − x′
r)

2(x′
s − x′

r)
(xs − xr)

2 (40)

=
1

2σ2
W

||y −Hx||2 +
∑

s,r∈P

b̃s,r(xs − xr)
2 (41)

The MAP estimate can then be computed through repeated minimization of equation 41.
It is important to note that the expression for b̃ differs based on the choice of prior model.
Recall that for this part of the lab, we will be using the QGGMRF as our prior model. The
QGGMRF specification for b̃ is given below:

b̃s,r ←



































bs,r
pσp

x
x′
s − x′

r = 0 ; p = 1

bs,r
|x′

s−x′

r|
2σp

x

p−2

∣

∣

∣

x′s−x′r
Tσx

∣

∣

∣

q−p
(

q

p
+

∣

∣

∣

x′s−x′r
Tσx

∣

∣

∣

q−p
)

(

1+

∣

∣

∣

x′s−x′r
Tσx

∣

∣

∣

q−p
)

2 else

.
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It turns out that a common choice for the q parameter is q = 2, and as such we will require
q = 2 for all parts of this section. An effective pseudocode specification of the algorithm for
such a minimization is specified on the following page. The above QGGMRF specification
for b̃ is the one you will use in the first step of the algorithm’s inner loop. The routines
get btilde.c and get btilde.h are included in the C-code provided for this laboratory. These
routines can be used to compute and return the value of b̃ for a given ∆ = x′s − x′r. The
syntax of the get btilde routine is:

double get_btilde(

double delta, /* difference between pixel x_s and its neighbor x_r */

double b, /* neighborhood relationship coefficient */

double sigma_x, /* scale parameter */

double p, /* shape parameter of qggmrf */

double q, /* " " " " */

double T /* threshold parameter of qggmrf */

)

Also note that b̃s,r must be computed for each neighbor of the current pixel xs in order to
compute θ1 and θ2. Please see Chapter 7 (particularly Section 7.3, p. 147) of Dr. Bouman’s
MBIP book for more details and theory.

ICD Algorithm with Majorization of GGMRF Prior:

1. Set K = desired number of iterations

2. Select desired values of σx and σW

3. Initialize x← y

4. Initialize e← y −Hx

5. For k = 0 to K − 1

(a) For each s ∈ S

b̃s,r ← bs,r
ρ′(x′

s − x′
r)

2(x′
s − x′

r)
∀r ∈ ∂i

θ1 ← −etH∗,s

σ2
W

+
∑

r∈∂s

2b̃s,r(xs − xr)

θ2 ←
||H∗,s||2
σ2
W

+
∑

r∈∂s

2b̃s,r

α∗ ← clip

{

−θ1
θ2

, [−xs,∞)

}

xs ← xs + α∗

e ← e−H∗,sα
∗
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Section Problems:

1. Use the same noisy and blurred image from Sections 2.4 and 3.1 as the image y, and
compute the MAP estimate of X using 20 iterations of coordinate decent optimization
with symmetric bound majorization as specified above. Use the parameters p = 1.2,
q = 2, σ1.2

x = σ̂1.2
x (i.e. the ML estimate of σ for p = 1.2), and σ2

W = 42. Print out the
resulting MAP estimate.

2. Produce two restorations using 20 ICD iterations with the parameters of problem 1
above, but with σx = 5∗σ̂x and σx = (1/5)∗σ̂x. Print out the resulting MAP estimates.

3. Plot the cost function of equation 36 as a function of iteration number.


